If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+10z=20
We move all terms to the left:
z^2+10z-(20)=0
a = 1; b = 10; c = -20;
Δ = b2-4ac
Δ = 102-4·1·(-20)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{5}}{2*1}=\frac{-10-6\sqrt{5}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{5}}{2*1}=\frac{-10+6\sqrt{5}}{2} $
| 3-n•2=30 | | 2x=19-15 | | -(-7v-7)=3+6v | | y−12=−4 | | 2/3k-8=24 | | 2(n+2(=5n-5 | | -6=3u/5 | | 8(y+5)=6(y–3) | | 2x+2/1=4x-3+X+3/2 | | -7x-4(x+21)=-161 | | 5/15=r+1/11 | | 7x11-2x11-6=87 | | 9+3w=2+9w | | 15(x-2)-21=-3(x+1) | | 2x-3+4x=-18 | | 1x-8=-14 | | 18x-12=3x+1 | | 8(x+3)-7=2x+6(2+x) | | 1.50+3+2.50=p | | 6(n+3)=6(n+4)+2n | | 14-2x=2(3x-1) | | 3;3+a2=9 | | 0/18-10x=-32 | | 3x-12=4=3x | | 2+3(1+w)=17 | | 35+x=7(5-6x) | | 8x+14=5x+4 | | 10.1=w÷5.3 | | 850+5x=985+-10x | | 4y+2y2=16+8y | | -2x-26=-4(x+9 | | 8+2x-14=x+6 |